

Baseline survey on water and sediments: Agrochemicals, Hydrocarbons and Heavy Metals in an emergent mixed production area

Monza, L¹; Dufilho, A¹; Macchi, P¹; Latini, L¹; Indaco, M¹; Pechen de D'Angelo, A¹; Londonio A²; Smichowski, P³; Loewy, R¹ liliana.monza@gmail.com

- 1. LIBIQUIMA-CITAAC, Facultad de Ingeniería, Universidad Nacional del Comahue UNCo-CONICET
- 2. Comisión Nacional de Energía Atómica CNEA
- 3. Comisión Nacional de Energía Atómica CNEA-CONICET

INTRODUCTION

Main economic activities of the studied region

Second world reserve of tight gas

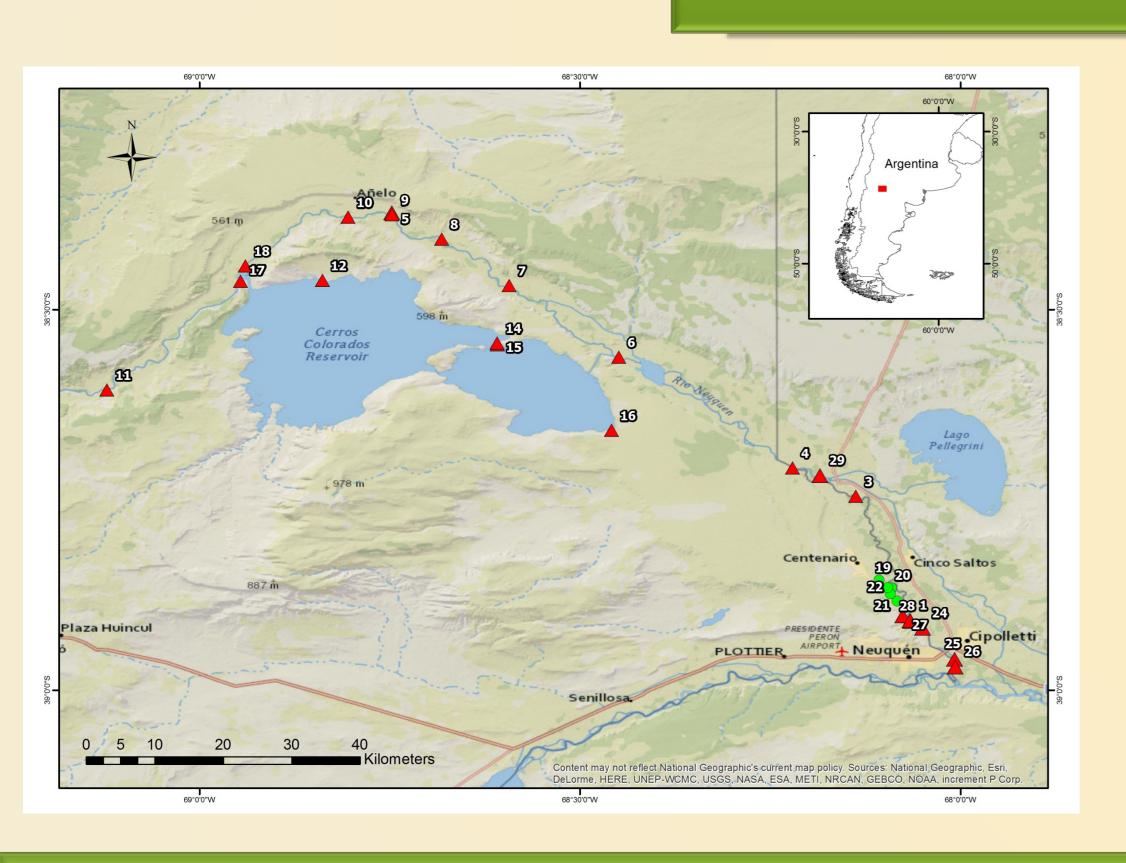
Fourth world reserve of shale oil

35 years of expected exploitation

Hydrocarbon basin- Geologic formation VACA MUERTA

World's leading producer of pears. 36,877 ha cultivated.

Enlargement of the agricultural area. Crop diversification.

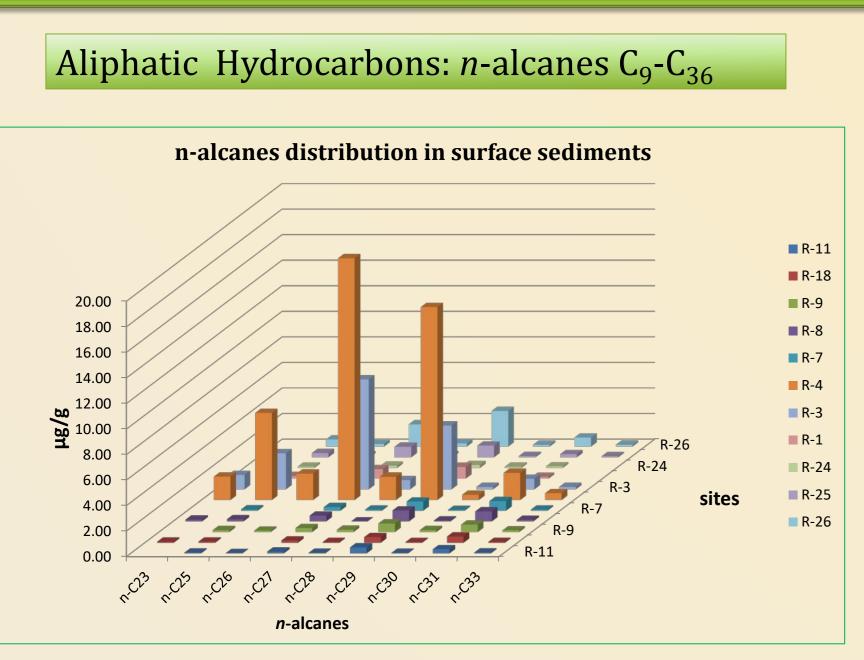


The hydrographic basin of the Neuquen river is extremely important as it comprises the major water resource for agriculture, agroindustrial, mining and drinking water (app. 400.000 inhabitants). There is a great public concern about the potential impact of the expected productive development on the water quality. It is necessary to run independent studies providing current baseline information.

Objective:

The aim of the present study is to assess the ecological condition of the middle and lower basin of the Neuquen river, addressing three main aspects: hydromorphology, biology and chemical status.

METHODS AND MATERIALS


Polyaromatic Hydrocarbons (PAHs)
acenaphthene, acenaphthylene, anthracene,
benzo[a]anthracene, benzo[b]fluoranthene,
benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]pyrene,
chrysene, dibenzo[a,h]anthracene, fluoranthene, fluorene,
indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene and
pyrene

Organochlorine pesticides and pyrethroids α -HCH, β -HCH, δ -HCH, γ -HCH, Heptachloro, Aldrin, Heptachloro epoxi, Endosulphan I, pp- DDE, Dieldrin, Endrin, pp-DDD, Endosulphan II, pp-DDT, Endrin aldehyde, Endosulphan sulfate, Metoxichloro, λ -Cialotrine, Permethrine, Cipermetrine, Fenvalerate and Deltametrine.

Organophosphate pesticides and carbamates propoxur, dimethoate, carbofuran, carbaryl, chlorpirifos, methidation, fenamiphos, triazophos, phosmet and metylazinphos.

The studied area embraces an extension of 120 km including two dams, a regulated section ($12~m^3/s$) and the river after the water restitution ($300~m^3/s$). 28 sampling sites were selected in the river, in the dams, and in farm drainages. Water and sediments samples were taken along 4 sampling campaigns. Organochlorine pesticides and pyrethroids (GC- μ ECD); organophosphate pesticides and carbamates (GC-NPD, GC-MS), heavy metals (ICP-OES, ICP-MS), AHs and PAHs (GC-FID, GC-MS) were analyzed. At the same time, aquatic macroinvertebrates were sampled using the multi habitat method. Basic physicochemical, hydrological and habitat data were measured in situ.

RESULTS

 Sediments
 Water

 Metal
 Mean
 SD
 Mean
 SD

 μg/g
 μg/g
 μg/L
 μg/L

 As
 5.39
 2.39
 5.36
 1.32

 Cd
 3.49
 0.31
 0.34
 0.02

 Cr
 21.18
 4.45
 0.99
 0.50

 Cu
 15.37
 6.67
 2.68
 1.60

 Pb
 33.44
 6.71
 1.92
 1.18

 Zn
 66.08
 23.96
 9.01
 2.96

 Hg
 <LOQ</td>
 <LOQ</td>

 B
 24.16
 23.28
 56.05
 15.60

 Ba
 24.16
 21.25
 61.34
 33.49

Heavy metals levels do not show trends that could be attributed to the agro industrial activity.

Heavy Metals in surface sediments

120.0

100.0

80.0

60.0

40.0

20.0

As Cd Cr Cu Pb Zn

Pesticide Residues

Maximum values

Clorpyrifos: 23 ng/g

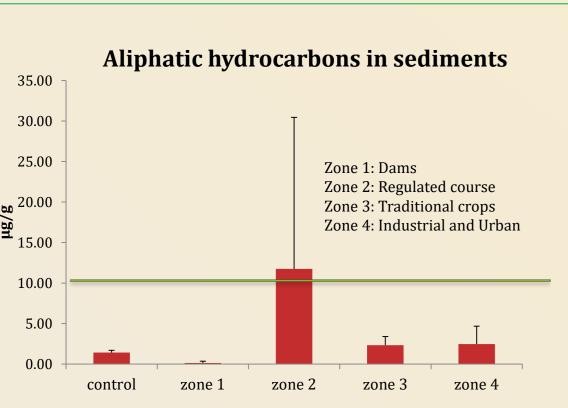
pp'DDE: 54 ng/g

No OP and along the schlorpyrifos

Detection of sediment san historical original prices.

pp'DDD: 0,14 ng/g

Endosulphan sulphate: 0,24 ng/g


No OP and carbamates pesticide residues were detected along the sub-basin, except for isolated cases where chlorpyrifos was detected in sediments of farmland drains.

Detection of organochlorine pesticide residues in some sediment samples (pp'DDE) can be attributed mainly to an historical origin.

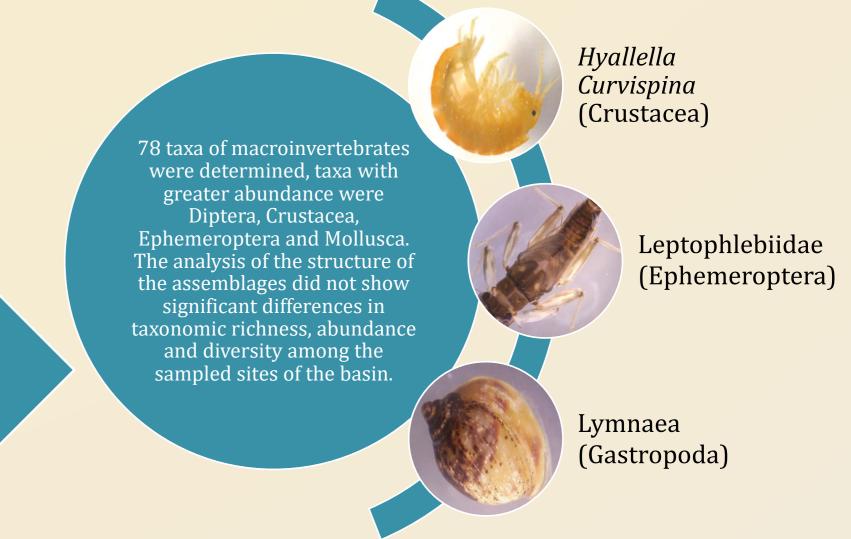
pesticides can be attributed to a greater number of producers applying integrated pest management and replacement by other active ingredients of less toxicity.

Low detection of organophosphorus and carbamate

However, crop diversification can bring in new pests and the application of other active principles that will need to be controlled.

Evaluation Indexes

CPI: 3.22-42,13. Biogenic source


MH: n-C27, n-C29 o n-C31. Terrestrial vascular plants

Even/Odd ratio: 0,04 - 0,26. Biogenic source

The reference value for non-contaminated sites, TPH 10µg/g (UNEP), was exceeded in sites 3 and 4. However, the non detection of PAHs in addition to the evaluation indexes show a biogenic source of the detected compounds.

TELs: Threshold Effect Levels
 PELs: Probable Effect Levels
 Below the TEL: the minimal effect range within which adverse effects rarely occur.
 Between the TEL and PEL; the possible effect range within which adverse effects occasionally occur.

Macroinvertebrates Assessment

CONCLUSION

As a preliminary conclusion the ecological status of the water body can be classified as good (DIRECTIVE 2000/60/CE) with very minor anthropogenic alterations from those normally associated with undisturbed conditions. This is an initial recognition survey from which an ordinary monitoring program is strongly recommended.